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The topographic wave equation is solved in a domain consisting of a channel with a 
terminating bay zone. For exponential depth profiles the problem reduces to an 
algebraic eigenvalue problem. In a flat channel adjacent to a shelf-like bay zone the 
solutions form a countably infinite set of orthogonal bay modes: the spectrum of 
eigenfrequencies is purely discrete. A channel with transverse topography allows 
wave propagation towards and away from the bay: the spectrum has a continuous 
part below the cutoff frequency of free channel waves. Above this cutoff frequency 
a finite number (possibly zero) of bay-trapped solutions occur. Bounds for this 
number are given. At particular frequencies below the cutoff the system is in 
resonance with the incident wave. These resonances are shown to be associated with 
bay modes. 

1. Introduction 
Topographically trapped waves have been extensively studied in both open and 

closed domains. I n  open geometries they occur as shelf waves propagating along 
continental boundaries, accounting for a large portion of the kinetic energy of the 
coastal flow field. Observations have been well interpreted by analytical and 
numerical models. Topographic waves have also been identified and modelled in 
closed domains. Although this was successful for lakes with a circular shape, 
interpretation of long-periodic signals in an elongated lake demonstrated the 
limitation of the existing analytical models (Mysak et al. 1985; Johnson 1987a). 

Stocker & Hutter (1986, 1987a, b)  present extensive results from numerical 
integrations of a low-order spectral model for a rectangular lake with idealized 
topography. For their chosen depth profiles normal modes can be divided into two 
types : basin-wide modes for which the motion is spread throughout the lake and bay 
modes for which the motion is highly localized. The bay modes correspond to the 
high-frequency modes found in the finite-element model of the Swiss Lake of Lugano 
by Trosch (1984) and come closest to the observed frequencies. 

Analytical models .by Lamb (1932), Ball (1965), Mysak (1985) and Johnson 
(1987~)  have concentrated on basin-wide modes. In  fact, the conformal mapping 
results of Johnson (1987 b)  show that, with the exception of the Ball bathymetry, the 
topography in each model can be mapped to an along-shore invariant topography in 
a straight channel and hence cannot support localized modes. Rasin-wide modes 
correspond to propagating shelf wave modes. 

It is the purpose of the present paper to give a simple model that displays the bay 
modes and resonances found in the numerical results. Section 2 introduces the 
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geometry of a straight, semi-infinite channel with a shelf terminating in a bay zone 
formed by an oblique shelf. The problem of finding eigenfrequencies and eigenmodes 
is reduced to an algebraic eigenvalue problem. Upper and lower bounds and 
estimates of the eigenvalues are obtained by restricting consideration to the bay zone 
and applying suitable open boundary conditions. In  93 the special case of a bay zone 
adjacent to a flat channel is investigated. The spectrum of eigenfrequencies is 
countably infinite. The results are extended in $4 to channels with shelves allowing 
energy to leak from the bay. Here, the spectrum consists of a finite discrete part and 
a continuous part. An estimate of the size of the discrete spectrum is given. Results 
are summarized in $5 .  

2. Statement of the problem 

linearized equation for the conservation of potential vorticity (Rhines 1969 a,  b ) ,  
Non-divergent, barotropic topographic waves on an f-plane are governed by the 

"?- ( H - ~ V Y J ) + ~ .  ( v Y A v H - ~ )  = o in 9, (2.1) 

Y = O  o n 9 ,  (2 .2 )  

at 

where !P is the mass transport stream function, H is the local fluid depth, 2 is the 
vertical unit vector and V is the horizontal gradient operator. Time in (2.1) has been 
scaled onf-l. The situations where (2.1) is a good model of geophysical motion are 
discussed briefly in Part 1 (Johnson 1989). Condition (2.2) expresses vanishing mass 
transport through the boundary i39 of the domain. 

Take Cartesian coordinates and consider the semi-infinite channel 2 3 0,O < y < 

(2.3) 

Figure 1 displays the lines of constant depth for this geometry. Since logH is 
harmonic (2.1) reduces to a Helmholtz equation (Rhines & Bretherton 1973). Look 
for solutions of the form 

with non-dimensional frequency IT. Then with (2.3), (2.1) reduces in both regions 

Y = Re {e-i"t@} (2.4) 

to 

where 

where 
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FIGURE 1. A semi-infinite channel in x 2 0 , O  < y < 1 with a bay zone for 0 < x < 1 and an adjacent 
channel for x > E .  Isobaths are given for three cases of b and c. In the bay they have slope -bl/c: 
(a )  b > 0, e = 0;  (b )  b > 0, c > 0;  (c) b = 0, c > 0. 

Solutions of (2.1) in the semi-infinite channel can be obtained by solving (2.6) in 

The boundary conditions on $ are 
the two regions and matching the transport and velocity field across x = 1. 

$ = O  o n a 9 ,  (2.8) 

V $ . V $ * < c o  a s x + m  (2-9) 

and the far-field condition that the kinetic energy remains bounded a t  infinity, 
i.e. 

when an asterisk denotes the complex conjugate. The fundamental solutions in the 
bay can be written 

$: = sinha,xsinnny, n = 1,2, .. . , (2.10) 

introducing for convenience 

a; = (nn)2-(b2+c2) --1 , 
t 2  i 2; = -a;. (2.11 a, b) 

Here the superscript b stands for bay and n is the transverse mode number. The 
a, are either real or purely imaginary. The satisfy (2.8) at x = 0 and y = 0 , l .  

The corresponding fundamental modes in the channel can be written as 

9; = exp(i:x+it,x sinnny, n = 1,2, ..., 1 (2.12) 

where the frequency u is related to the along-channel wavenumber k via the 
dispersion relation 

i.e. 

2ck 
k2 + c2 + (nn)2 ' 

(T= (2.13) 

(2.14) 

With these definitions k is the wavenumber in the x-direction of the stream 
function ~. Propagating modes with transverse mode number n are possible 
provided that the frequency does not exceed the cutoff frequency of the nth 
transverse mode : n 

(2.15) 

At frequencies (7 > (7, the modes decay exponentially. 
It is shown in Part 1 that bounds on the eigenfrequencies can be obtained by 

considering reduced domains with suitable boundary conditions. In  the present 
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geometry it is convenient to  take the reduced region to be the bay zone. As the 
channel alone cannot support trapped modes the eigenfrequencies of the reduced bay 
are in a one-to-one correspondence with those of the full problem. The boundary 
conditions at  the bay edge associated with the upper, aEm, and lower, dnm, bounds 
for the eigenfrcquency of the (n,m)-mode are given by 

g5 = 0 for a:,, $,+b$ = 0 for a:,. (2.16) 

The eigenmodes can be written in the form 

q5 = sinoi,xsinnny, m , n  = 1 , 2 , .  . . ,  

with associated frequency estimates 

(b2 + c2); d;; = 
(b2 + c2 + + 43;' (2.17) 

whwe 4, = mn/l for dnm, (7im + b tan&, 1 = 0 for a:,. 

For usc in $4  note that an explicit upper bound for a",, is given by 

oi, = (m-&)n/I.  (2.18) 

The cigenfrequencies of the full and two reduced problems are thus countably 
infinite. Thc spectra are discrete with an accumulation point a t  a = 0. The quality 
of the estimate (2.17) is shown below. 

3. The flat channel 
Considsr a semi-infinite domain with a flat channel section, i.e. c = 0 in (2.3), see 

figure 1 .  There are no propagating waves in the channel: @ decays exponentially 
thcre, with (2.14) giving k = inn. I n  the bay the depth profile in x allows shelf waves 
to propagate in the y-direction and bc reflected from the channel walls y = 0 , l .  The 
solution in this case can be written 

C d, $k = Z d, cxp ( -nnx) sin nny, x > 1, 
[ n - l  n=1 

with a, given by (2.11) with c = 0. The stream function (3.1) with (2.4) is an exact 
solutioii of (2.1) in the semi-infinite channel provided the stream function and the 
velocity field are continuous across x = 1. Since the set {sinnny, n = 1,2 ,  . , .} is 
complete in [0,1], this requirement determines the complex coefficients a, and d, of 
the superposition (3.1), viz. 

Z a, sinh a, I sin nxy = Z d, exp ( - nnl) sin nny, ( 3 . 2 a )  

exp 61 - i- y a,(b sinha, I +an cosha, I) sin nny ( 3 
= Cd,(-nx)exp(-nxZ)sinnny. ( 3 . 2 b )  
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Operating with 

on both sides of (3 .2)  and using the orthogonality of sinnny gives 

+'lam sinh a, 1 = J,, d, e-,lrl, ( 3 . 3 ~ )  

(3 .3b)  &'larn (b sinh a, 1 + a,  cosh a,  I) = J,, d,( - nn) e-nrrz, 

where the sum over n is understood and the matrix elements J,, are defined as 

J,, = dyexp i-y sinmnysinnny i: ( 3  
2 mn 
n ((m+n)2-T2)(T2-(m-n)2) 

= -7 (  - I),+, j s i n n ~ + i ( c o s n ~ - ( -  l)m+n)], (3 .4)  

where 7 = b / n a .  Combining (3 .3a)  and (3.3b) leads to 

with 

Om, e-nnldn = 0 

D,, = (b  -k a,  coth a, 1 + nn) J,, 
(3 .5)  

This has a non-trivial solution provided 

det D = 0. (3 .6)  

I n  order to obtain numerical solutions the infinite system (3 .5)  must be truncated. If 
the summation is restricted to n = 1 ,  . . . , N ,  (3.1)  is merely an approximation to the 
true solution in that all transverse modes with mode numbers larger than N are 
discarded. The error is then orthogonal to all modes n < N ,  and completeness of the 
sin nny implies convergence for increasing truncation order. The problem therefore 
reduces to solving the algebraic eigenvalue problem (3 .5)  of order N .  Numerical 
calculations have revealed that (3  5 )  represents a fairly stiff system of equations. 
Equation (3 .6)  selects distinct eigenfrequencies for which there is wave motion in the 
bay region which exponentially decays outside. It has been demonstrated in Part 1 
that the eigenvalues of the exact problem (2 .1)  are real. Generally, de tD takes 
complex values and one might wonder whether the truncated problems (3 .6)  also 
yield real eigenfrequencies g. Indeed, i t  can easily be shown that the problem of 
lowest order (N = 1)  requires real eigenfrequencies in order to satisfy (3 .6) .  A similar 
result for N > 1 is not immediate, although computations suggest this is the case. 

Table 1 lists the first four eigenfrequencies of a flat, semi-infinite channel with a 
shelf bay zone. The convergence of these values with increasing N is rapid; an 
accurate approximation is obtained with N as small as three. The coefficients show 
similar rapid convergence with increasing N .  Table 2 shows that the approximations 
t o  a particular coefficient a, in the expansion of the ( 1 , 2 )  mode are well determined 
by N == 7 for i d 4 .  

Figure 2 displays the stream function for the first four eigenmodes. Wave energy 
is trapped within the bay region, propagating back and forth on the bay shelf. For 
cr > 0 (northern hemisphere) the waves are right bounded, i.e. their phase propagates 
in the negative y-direction. Outside the bay the stream function vanishes 
exponentially. The influence of the topography parameter b is shown in figure 3. 
Frequencies increase monotonically with b and approach 1 as b goes to infinity, 
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N (%4 = (1,1) (1,2) (%2) 
1 0.238734 0.158710 - - 
2 0.234977 0.152966 0.146026 0.120879 
3 0.235097 0.153740 0.143691 0.117171 
4 0.235094 0.153785 0.143681 0.117137 
5 0.235096 0.153792 0.143730 0.117331 
6 0.235095 0.153794 0.143728 0.117331 

TABLE 1. The first four eigenfrequencies u,,, where n is the transverse and m the along-axis 
wavenumber. Here b = 1 = 1. The rapid convergence with increasing truncation order N is 
evident. 

la11 la21 la31 b 4 I  

4 1 1.958 x 10-1 1.110 x 6.728 x 
5 1 1.972 x 10-l 1.045 x 5.013 x 
6 1 1.963 x lo-’ 1.008 X 2.739 X 

7 1 1.959 x 10-l 1.000 x 2.652 x 

TABLE 2. Convergence of selected coefficients ai in (3.1) for gI2 with increasing truncation order 
N ; b = l = l  

t = O  p& 
t = T / 4  

r21 

FIGURE 2. The stream function Y of the first four eigenfrequencies in a flat semi-infinite channel 
with a shelf bay zone. The solutions are bay modes: all wave activity is trapped in the bay zone 
and Y is exponentially evanescent for x > 1. Here b = 1 = 1 and N = 6. 
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FIGURE 3. The eigenfrequencies CT as functions of the topography parameter b for 1 = 1, N = 6 
for a bay adjacent to a flat semi-infinite channel. 

FIGURE 4. 

0.: 
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I I I 1 

I 
The eigenfrequencies u as functions of the length 1 of the bay for 

for a bay adjacent to a flat semi-infinite channel. 
1 = 1 ,  N = 6  
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Changing the topography parameter does not alter the ordering of the eigen- 
frequencies. 

In  figure 4 the eigenfrequencies are plotted as functions of I, the length of the bay. 
For large 1 they approach their corresponding cutoff and the frequencies of modes 
with different along-axis wavenumbers merge. For small I different transverse mode 
numbers are less important. Hence, the relative ordering of the modes changes with 
1. Large 1 will gather modes with identical transverse mode numbers whereas 
eigenfrequencies of modes with identical along-channel mode numbers merge for 
small 1. This is in contrast to  the behaviour shown in figure 3. 

4. Channel with topography 
Consider now (2.3) with c =+ 0. The cutoff frequencies u, given by (2.15) are non- 

zero and so for u < r1 topographic waves carry energy both towards and away from 
the bay : only for u > u1 are bay modes possible. The spectrum is discrete (or empty) 
above ul and continuous below it. 

It follows from (2.14) and (2.15) that  for u < cNR, for any integer NR, there are 
UV, propagating modes in the channel. h& modes have positive group velocity and 
carry energy away from the bay. The remaining modes carry energy towards the 
bay and any one of these can be selected as the incident wave y9i. For definiteness, 
attention is restricted to an incident wave of transverse order 1. Similar results are 
obtained for other incident modes. The solution takes the form 

m m 
Z a,$: = epXfyY Z a,sinha,xsinn.ny, 0 < x < 1, (4.la) 

n-1 

00 

d, $: = eCYeikixsinny 
n-1 

N R  

n=1 
+ ecv C r ,  eiknx sin nny 

N 

+ecv C d,eiknxsinnny, x > 1, 
n - N R + l  

(4.1 b)  

I 

The solution (4.1) in the channel region consists of three contributions. The first 
represents the incident mode and the second the superposition of & reflected modes. 
The third contribution comprises the evanescent modes which are important only 
close to the bay zone. The latter two sums may be combined to a single term with 
d, = rn for n = 1 , .  . . ,&. 
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Requiring again continuity of @ and @z a t  x = 1 gives 

(4.3) 

= ecyikieikiz sinny+ecYf/dnik,eiknzsinnrcy. I ePz+7Y C a, sinh a, 1 sin nrcy = ecY eikiz sinrcy + ecY I: d, eiknz sin nrcy, 

&'+Yal C a,(Psinh a, 1 + a, cosh a, 1) sin nrcy 

Operating on both sides with dye-yysin mrcy isolates the bay coefficients according 
to 

&Parn sinh a, 1 = eikfLJml + J,, eiknz d,, 

$e~zam(/3sinha,l+a,cosha,1) = ikieik~zJml+J,,ik,eiknzd,, (4.4) 

where the sum over n is understood and J,, is given in (3.5). Eliminating a, from 
(4.4) yields the inhomogeneous algebraic system 

(eik~z(~+a,cotha,l-ik,) J,,)d, = (iki-~-a,cotha,l)eik~zJ,l, (4.5) 

which is truncated to order N when a numerical solution is sought. 

4.1. Bay modes 
When u > u1 all modes are evanescent in the channel and trapped in the bay. The 
number of bay modes for a given geometry can be obtained using the frequency 
estimates of $2. Mode (n ,m)  is trapped if d,, 2 u1 and cannot be trapped if 
a:, < ul. Let &(n) be the number of bay modes of transverse order n. Then from 
(2.15), (2.17) and (2.18) 

[ l (b2 /c2  + 1 -n2);] < %(n) < [t+l(b2/c2 + 1 -n2);],  (4.6) 

where [ ] denotes the integer part. This relation determines NB(n) uniquely when the 
bounds coincide and gives upper and lower estimates differing by unity otherwise. 

The total number of bay modes follows as 

If the channel is flat (c = 0), this series consists of an infinite number of terms 
corresponding to a doubly infinite set of bay modes. For c > 0 the series is finite, 
consisting of a t  most [(b2/c2 + 1 - 1/(2Z2))t] non-zero terms. Thus bay modes are 
absent if c > 2bl. A stronger criterion for the absence of bay modes is of course given 
by uyl < ul. Relation (4.7) gives straightforward bounds on the size of the spectrum, 
including the effects of both geometry and topography. 

Bay modes for two values of c are displayed in figure 5 .  For c = 0.3 (4.7) yields 
6 < NB < 8 (3 are shown). For c = 1, NB = 1 and only the fundamental bay mode is 
present. For c 2 1.55, i.e. a& < ul, no bay modes occur. Phase propagation in the bay 
zone follows the lines of constant depth and is therefore slanted according to the ratio 
bllc. 

4.2. ReJlections 
In  this section the properties of the semi-infinite channel under incident wave energy 
are studied. This implies restriction of the frequency domain for which topographic 
wave propagation in the channel region is possible to the interval 0 < u < gl. This is 
the continuous part of the spectrum. The solution to this problem is given by the 
inhomogeneous algebraic system (4.5). 
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I I 

I 

c = 0.3 c = l  

FIGURE 5. Contours of the stream function of the first three bay modes (c = 0.3) and the single 
bay mode (c = 1 ) .  The parameters are b = 2 = 1 and N = 6. 

For vn+l < c < en the reflected energy is distributed onto n different transverse 
modes. The relative importance of these modes can be determined by calculating the 
fluxes of kinetic energy associated with each of them. 

With reference to the transport equation for kinetic energy density given in Part 
1, define the time-averaged energy flux crossing any plane x = constant in the 
channel by 

F =  ( 1 ; F d y ) .  (4.8) 

This is independent of x as the time-averaged Aux field is solenoidal and F vanishes 
on y = 0 , l .  Recasting ( 2 . 3 ~ )  of Part 1 in terms of the complex wave amplitude $, and 
inserting (2.3) and ( 4 . l b )  gives the total flux (4.8) as the sum of the fluxes of the 
individual incident and reflected modes, viz. 

00 

F = F, + x Fn = &2c, (2c - e(k, + kz)) ei(kn-k:)sd n d* n' 

The wavenumbers for the propagating modes (n = i, 1,  . . . ,&) and the evanescent 
modes (n > N,) are given in (4.2) and hence 

n-1 

The energy contained in the evanescent modes is locally conserved. Expression (4.9) 
suggests the introduction of a positive reflection coefficient R,  per unit incident 
energy flux of the form 

c - gk, 
aki - c R ,  = ___ 1rnI2, (4.10) 

satisfying the relation 
NR x R, = 1. 
n-i 

Figure 6 displays R, as a function of the frequency. For the chosen channel 
topography (c  = 1) the cutoff frequencies are gl = 0.3033, u2 = 0.1572, v3 = 0.1055. 
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FIGURE 6. Reflection coefficients R,  as a function of the frequency. The parameters are 
N = 6 , b = c = l = l .  

u = 0.300 

I 

0.210 

0.150 

0.138 
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FIGURE 7 .  Streamlines for decreasing frequencies in the continuous spectrum. The 
parameters are as in figure 6. 

For (T, < u < (T, all reflected energy is contained in R, with R, = 1. Decreasing (T 

below each successive cutoff frequency adds further reflected modes. Note that R, 
and R, contain alternately the major part of the reflected energy. Changes from one 
behaviour to the other are very sharp. Figure 6 is qualitatively similar to the 
corresponding figure in Stocker (1988) showing that the simple geometry of the 
present model captures the main features involved with the reflection of topographic 
waves. 

Figure 7 shows solutions belonging to the continuous spectrum. For u, < c < ( T ~  

a beat pattern prevails in the channel part arising from a superposition of the 
incident wave with wavenumber k, and the only reflected mode k,, both of identical 
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FIGURE 8. Energy in the bay as a function of the frequency. The parameters are a8 in figure 6. 

transverse order. Note that for frequencies close to the cutoff  IT^ no wave energy can 
be fed into the bay zone. As the wavelength of the incident wave becomes shorter (for 
IT decreasing) wave activity in the bay is enhanced. For IT < u2 wave motion in the 
channel consists of several transverse modes. The reflection behaviour of the semi- 
infinite channel strongly depends on the frequency of the incident wave. This mode 
has the characteristic lengthscale 27r/ki which interacts with the 'resonator ' (the 
bay) of lengthscale bllc. 

4.3. Bay modes and resonances 

Resonances in the continuous spectrum were reported by Stocker (1988) and 
associated with leaky bay modes. These are revealed in the present study by 
considering the energy content of the bay zone. The depth-integrated energy density 
per unit mass in terms of the complex stream-function amplitude over one period 
is 

(4.11) 

Integrating (4.11) over the bay zone to obtain the total energy shows that the modes 
couple in the bay zone, in contrast to the modes in the channel, for which there is no 
interaction. The result, scaled on the incident flux, is 

sinh a, I(b2 + c2 + (n7r)2) 

I b nb nm 
U2 2 1 n2 - m2 --(b2+c2)+-(cosha,Z-l) -2i- C a,a;---- ( l - ( - l ) n + m ) % m ,  

n , m  
n l m  

(4.12) 

where 

sinh (a, -a:) 1. sinh (a, +a;) I----- y =--- 1 1 
a, + U; a, -a; n m  
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FIQURE 9. Streamlines at resonances corresponding to figure 8. 
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FIGURE 10. Frequencies of bay modes and resonances as functions of the channel topography. For 
increasing c the bay modes undergo transition to resonances. Thus each resonance in the 
continuous spectrum u < u1 corresponds to a bay mode of the discrete spectrum for c = 0 (flat 
channel). The parameters are as in figure 6. 
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FIRURE 11. Lines of constant energy in the bay, increasing towards the shaded areas. The figure 
displays the domain 0.6 < c < 2 and 0.1 < u < u1 of figure 10 mapped onto a square. Dashed lines 
of constant c are vertical, those of constant u are curved; dashed-dotted lines indicate the cutoff 
frequencies of the adjacent channel. The resonances appear as ridges in this graph and are labelled 
according to their bay-mode limit for c = 0. Resonances unm become weak when unm < un. 

Figure 8 displays the total amount of energy as a function of the incident 
frequency. Whereas the reflection coefficient revealed no structure in u2 < u < c,, 
the bay energy exhibits a conspicuous resonance a t  u = 0.203. At LT = 0.222 a further 
weak resonance is visible. This indicates that each resonance can be associated with 
a pair of mode numbers according to the structure of the wave motion in the bay 
zone. From figure 9 it is evident that the bays sustain patterns very much like those 
shown in figure 5 which were true bay modes. 

It has been demonstrated above that the spectrum of the topographic wave 
equation in the semi-infinite channel can consist of a discrete and a continuous 
spectrum. Solutions associated with the discrete spectrum are trapped in the bay 
zone - they are true bay modes whereas solutions of the continuous part are free 
states: incoming wave energy is reflected. Increasing the cutoff frequency of the 
channel region, i.e. increasing c, causes a decrease in the number of true bay modes. 
Figure 10 displays the bay mode frequencies as functions of the topography 
parameter c. The dashed-dotted lines indicate the cutoff frequencies of the individual 
transverse modes. For a < c1 true bay modes evolve. It is evident that, owing to a 
different functional dependence of u, and u,, with respect to c ,  the lines of unm 
intersect those of u, for increasing c. Once a, is crossed a true bay mode becomes a 
resonance in the continuous spectrum. Moreover, once unm crosses u, the resonance 
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FIQURE 12. Upper and lower bounds for the eigenfrequencies u12 and uzl and their average (dashed 
line) as functions of the channel topography. The cutoff frequencies u1 and u2 are dashed-dotted. 
For u < u1 bay modes prevail and the bounds are rigorous. For the strong resonance uzl < u1 the 
estimated frequency is still good, whereas deviations are observed as the resonance becomes weak, 
i.e. uI2 < ul. The parameters are N =  6, b = 1 ,  1 = 2.  

may become weak, because the mode with the same transverse mode number n is 
now propagating in the channel. This is indicated by dashed lines in the figure. 
Therefore, each resonance in the continuous spectrum can be associated to  a true bay 
mode, i.e. a solution of the discrete spectrum of the simple bay model with c = 0. 
Hence, with increasing c (or decreasing bl)  true bay modes do not vanish but rather 
emerge as resonant states in the continuous spectrum. 

Figure 11 displays more quantitatively the development of the resonances 
when the leakage of the adjacent channel is increased. The domain 0.6 < c < 2 and 
0.1 < v < v1 of figure 10 is mapped onto a square and lines of constant bay energy 
are plotted. Resonances appear as shaded ridges; they are labelled according to  their 
flat-channel limit. Once the resonance vnm falls below the cutoff vn the energy in the 
bay decreases and the resonance becomes weak. 

In  $2 lower and upper bounds of the eigenfrequency vnm were calculated. Figure 
12 displays these bounds for the two (1,2) and ( 2 , l )  modes as a function of the 
channel topography. The exact value lies close to the average of the bounds, being 
graphically indistinguishable for the ( 2 , l )  mode and differing by less than 1 % for the 
(1,2) mode. The accuracy of the estimates relies on the assumption that the majority 
of the disturbance is confined to the bay zone. Thus the estimate remains good 
for the (2, I)  mode below the frequency u1 at which propagating modes occur in 
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1. 
2. 

3. 

4. 

5.  

Structure of domain Discrete spectrum Continuous spectrum 

Lake basin, domain closed 
Bay zone connected with flat open 

Open domain : bay and adjacent channel 

As 3 with u1 large 

KO bay zone or bay conformally 

domain 

or shelf with cutoff ul 

equivalent to channel 

Countably infinite Empty 
Countably infinite Empty 

Finite for u > crl 

Empty 

0 < u < ul, infinite 

0 < u < ul, infinite 
number of resonances 

number of resonances 

no resonances 
Empty 0 < u < (T1, 

TABLE 3. The structure of the domain governs the spectrum 

the channel and the mode becomes a strong resonance. The estimate is poorer for the 
mode (1,Z) below the frequency vl as the resonance is only weak and so the 
disturbance in the channel is relatively strong. 

5. Conclusions 
Topographic waves in a semi-infinite channel with a terminating bay zone are 

considered. Solutions are given in both the bay and channel regions by a linear 
superposition of modes of increasing transverse order. The coefficients involved are 
calculated by solving a homogeneous system of linear algebraic equations that 
emerge from stating continuity of the physically relevant fields across the bay edge. 
In order to obtain numerical solutions, the infinite dimensional system is truncated ; 
convergence of both eigenvalues and eigensolutions is demonstrated. Truncation 
orders as small as three provide satisfactory results for the lowest modes. 

A first simple configuration consists of a shelf bay zone adjacent to a flat channel. 
This prevents wave energy from radiating away from the bay: waves are trapped. It 
is shown that this geometry sustains a countably infinite set of bay modes -solutions 
which are exponentially evanescent away from the bay. The spectrum of eigen- 
frequencies is discrete. These solutions are in qualitative agreement with the bay 
modes of Stocker & Hutter (1987a, b) .  

To more closely model their results the topography was generalized to consider 
a channel with a shelf and a bay with oblique bottom contours. The number of 
bay modes was shown to be of the order b l l c ,  thus reflecting the interplay of the 
topography ( b , c )  and geometry (I) of the domain. Whereas the spectrum of the flat 
channel is purely discrete, channels with transverse topography exhibit compound 
spectra consisting of a continuous and a possibly empty, discrete part. The former 
contains an infinite set of resonances each of which can be attributed to a point in 
the discrete spectrum of the flat channel. Resonances can thus be considered as leaky 
bay modes. Table 3 summarizes these findings. 

It is apparent that solutions that belong to the discrete part of the spectrum 
represent an important and characteristic feature of topographically trapped waves. 
This study therefore strongly suggests that one should be aware of localized wave 
motion in domains with variable cutoff frequencies of topographic Rossby waves, 
such as gulfs and estuaries connected to continental shelves or bays in lakes. 

Generally, in a lake or ocean basin each bay or localized topographic irregularity 
may sustain its own trapped modes or can be brought into resonance by an external 
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source such as shelf waves along continental boundaries or passing atmospheric 
systems. It is the local geometry and the particular topography that determines the 
frequency of the bay modes and resonances. The topography of adjacent shelves is 
decisive in whether wave energy in the bay can be carried away forming a leaky mode 
or whether the mode remains trapped. 

One of the authors (T. F. S.) was supported by SERC grant GR/E/64039 while 
performing this study. This and the typing of B. R. Lankester is gratefully 
acknowledged. 
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